HARVARD COLLEGE
MATH 22B - FINAL PROJECT

An Introduction to Point-Set Topology

Erin Yuan, Nishant Mishra
Spring 2021

0 COVER LETTER
Dear Dusty, Math 22b TFs/CAs, and Math 22b students,

We hope this cover letter finds you well! In this paper, we present a short introduction to
topology through the lens of set theory, which we covered in the first half of Math 22b. Our
goal is to give Math 22b students a primer on how to interpret and prove theorems related to
point-set topology by expanding on concepts from class such as open sets, closed sets, and
boundary points.

In terms of contributions, we worked together to tackle the proofs while writing other sec-
tions independently. Jointly, we wrote up an outline, decided on notation and definitions,
talked through proofs, and solved examples. Separately, Nishant drafted the proofs and Erin
looked into applications. (Nishant also proudly takes credit for writing the introduction while
Erin proudly takes credit for the meme.)

After our first draft, we made several changes according to feedback from peer reviews,
including clarifying language used in proofs, correcting typos, and re-structuring the overall
paper. We also finished writing the section on homeomorphisms for letters, which involved
defining n-vertices, holes, and connectedness, which we then used to classify the alphabet
into 8 homeomorphic classes.

We are endlessly grateful to Professor Grundmeier; course TFs and CAs, especially Austin
and Kevin for their feedback on our first draft; our peer reviewers Albert, Andy, Kathy, and
Guanyu; Albie the Cat; and you, the reader!

Sincerely,
Erin Yuan and Nishant Mishra



1 INTRODUCTION AND MOTIVATION

It’s 8:30 A.M., and you've got class in a half hour. You're a busy mathematics concentrator so...
needless to say, you didn’t get that much sleep last night. In a desperate attempt to dredge up
some level of alertness before your first class, you find your way to Annenberg. As you feebly
try to distinguish the coffee mugs and donuts being handed to your fellow first-years, you
might be surprised to hear that, for mathematicians, coffee mugs and donuts are technically
indistinguishable.

Figure 1.1: A coffee mugs and a donut are considered to topologically be the same. What
similarities can you find between the two objects? Figure created by authors.

"Topologists can't tell the difference between a coffee mug and a donut!" This common joke
in mathematics draws its humor from the field of topology, which studies the properties of a
geometric object that are preserved under a series of continuous transformations including
stretches, compressions, twists, and other similar manipulations [10]. Building off our knowl-
edge of vector calculus from class, in this paper, we explore how to use these tools to prove and
analyze different theorems in point-set topology, a sub-field of the broader field of topology.
We transition naturally from familiar concepts in Math 22b to investigate the central problem
of topology: what types of objects can be transformed into another?

1.1 WHY STUDY TOPOLOGY?

Beyond the core gratification (we hope) that might be gained from proving theorems from
the purely theoretical aspects of topology, these concepts have a multitude of applications in
subjects beyond mathematics.

One such example is seen in biology. Because the unique functions of proteins draw directly
from their folding mechanisms, the interdisciplinary field of circuit topology uses mathemat-
ical tools to analyze these three-dimensional arrangements. Set theory is used to illustrate
the topology of a single folded protein by noting its intramolecular interactions or structural
changes during reactions in a matrix [9]. The neat mathematical characterizations of these
complex structures are especially useful for biochemical engineers to manipulate molecular
structure to create new orientations of molecules—or even new molecules themselves. Topol-
ogy was also used to understand the "DNA packaging problem": how can a cell’s DNA, which



measures almost three meters when stretched out, be packed into the tiny nucleus? Since
DNA can be visualized as a complicated knot when tightly wound together, biologists use
topological concepts from another sub-field called knot theory, which studies how loops that
intersect can be formed or undone, to see how "knots" in DNA can be wound, untangled, or
sliced by enzymes [1].

In data science, mathematics and computer science are married together in a recently
developed theory called topological data analysis, which describes three-dimensional objects
using data based on topological features. Such topological features are defined based on the
connectivity of an imaginary ball drawn with radius equal to the distance between any starting
point on the surface of the object to any other point on the surface. For example, if the
imaginary ball drawn includes a gap between one part of the object and another part of the
object, then this feature is deemed a "hole." This information is summarized in a chart (called
a "persistence diagram") that computers can read to generate an entire structure’s width,
breadth, and depth using just numbers [3].

Even beyond academic and scientific disciplines, topology is embedded in our popular
culture—particularly the aforementioned discipline of knot theory. As an example, one popular
toy called disentanglement puzzles are pieces of string, rings, or wire intertwined together that
are meant to be creatively separated [6]. Possibly the most famous type of disentanglement
puzzle is the "human knot" game played by large groups during team-building exercises. The
goal is to unwind a "knot" created from joining hands randomly with others without breaking
any person’s grasp. The next time you participate in this activity (COVID-19 restrictions
allowing), we hope you’ll be reminded of its delightful roots from mathematics!

2 REPRESENTING TOPOLOGY WITH SET THEORY

2.1 WHAT IS POINT-SET TOPOLOGY?

Coffee cups don’t physically look like donuts, so they can't really be the same, right? However,
through the lens of topology, the rules that define whether two objects are the same become
much less rigid. To understand these rules, we use point-set topology, which lays out the
basic set-theoretic definitions and constructions for topology [8].

2.2 SPACES IN TOPOLOGY

Recall, from Math 22b, the concepts of open sets, neighborhoods, boundary points, and
closed sets. As a refresher, here are the definitions of these terms.

Definition 2.1 (Open Set [7]). A set U c R" is called an open set if, for every xj € U, there exists
an r > 0 such that D, (x9) c U. Here D, (xy) is the open ball centered at xy of radius r; namely

Dy (xp) = {xeR":||x— xol| < 1}



Definition 2.2 (Neighborhood [7]). A neighborhood of a point x € R” is an open set containing
X.

Definition 2.3 (Boundary Point [7]). A boundary point of a set U € R" is a point x such that
every neighborhood of x contains at least one point in U and at least one point not in U.

Definition 2.4 (Closed Set). A set U is called a closed set if it contains all of its boundary
points.

Something that repeatedly comes up in the definitions of open and closed sets—specifically
regarding the positive radii of balls constructed around a point in the set—is the notion of
distance. We can formalize this notion of distance by characterizing the space where open and
closed sets typically exist: a metric space.

Definition 2.5 (Metric Space [4]). A metric space is a set X that is made of a) a set of points
and b) a function called the distance function or metric, which takes the distance between any
pair of points in the set. For example, the distance between two points @ and § in X is notated
as d(a, ), where d is the distance function. The distance function, possesses the following
three characteristics:

1. (Positive Definite). d(a, ) = 0 for any & and f in X, and d(a, B) = 0 if and only if @ and
B are equal and are in X.

2. (Symmetry). d(a, B) = d(B, @) for any a and g in X.
3. (The Triangle Inequality). d(«, B) + d(B,y) = d(a,y) for any «, B, and y in X.

Our definitions from Math 22b of open sets, closed sets, and boundary points only applies
in the context of metric spaces because metric spaces include the crucial concept of distance.
However, topology is intrinsically much more abstract, and the spaces in topology do not nec-
essarily operate with distance functions like metric spaces. We now generalize the idea behind
metric spaces to new spaces called topological spaces, first by introducing the definition of a
topology.

Definition 2.6 (Topology [4]). A topology T on a set X consists of subsets of X satisfying the
following three properties:

1. Both the empty set and X are elements of .
2. Any union of elements of 7 is an element of 7.
3. Any intersection of finitely many elements of 7 is an element of 7.

Definition 2.7 (Topological Space [4]). A topological space is a pair (X,1), where X is a set
and 7 is a topology.

Let’s apply our new knowledge of topologies and topological spaces to an example.
Example 1. Let X ={1,2,3,4} and 7 = {¢,{1},{1,2},{1,2,3},{1,2,3,4}}. Is T a valid topology?

Solution. We check the three properties of a topology listed above:



1. Both the empty set and X are elements of T. Both ¢ and X = {1,2, 3,4} are indeed included
inT.

2. Anyunion of elements of T is an element of 7. In the list {@}, {1}, {1,2}, {1, 2,3}, and {1, 2, 3,4},
each element is a subset of the element to its right {i.e. {1} is an element of {1,2}, {1,2} is
an element of {1, 2, 3}, etc.}. Thus any union of any number of elements of 7 will equal the
element in the union that is furthest along in the list {in other words, the "right-most"
element). Since each element composing the union has to be from 7, then any union of
elements in 7 is an element of 7.

3. Anyintersection of finitely many elements of T is an element of T. In the list {@}, {1}, {1,2},{1,2,3},
and {1,2, 3,4}, each element is a superset of the element to its left. Thus any intersection
of any number of elements of 7 will equal the element in the intersection that is earliest
in the list (or the "left-most" element). Since each element composing the intersection
has to be from 7, then any intersection of elements in 7 is an element of 7.

So 7 is a valid topology of X! This conclusion also lets us say that (X, 1) is a topological space.

Note that while the notion of distance doesn’'t appear in the definitions for topologies or
topological spaces, that doesn’t necessarily mean that distance doesn’t exist in topological
spaces—only that we can't assume that it does. We now want to expand our previous definitions
of Math 22b concepts to function within these new spaces. However, since we originally
defined these terms using distance (with open balls and radii), and we now can’t assume that
distance exists, we will redefine these concepts without distance so they fit in the context of
point-set topology.

Definition 2.8 (Open Sets, Topological Form [4]). A set is considered an open set in (X, 1) if it
isinT.
We can remove the metric assumption from neighborhoods by just removing R” from the

original definition and generalizing it to X.

Definition 2.9 (Neighborhood, Topological Form [4]). A neighborhood of a point x € X is an
open set in X containing x.

We also follow the same idea (generalizing to X) to arrive at a new definition for boundary
points.

Definition 2.10 (Boundary Point, Topological Form [2]). A boundary point of aset A€ X is a
point x such that every neighborhood of x contains at least one point in A and at least one
point not in A.

For closed sets, let’s first say the following:

Definition 2.11 (Closed Sets, Topological Form [4]). A set A that is contained in another set X
is considered a closed set if X \ A is open.



We've now refined our original definitions to ensure that they do not rely on distance.
This process of reworking the definitions for neighborhoods and boundary points might
make intuitive sense—after all, we simply generalized R” to X to make sure there was no
metric assumption. But what about open and closed sets? How can we be sure that our new
definitions capture the same meaning as our old ones? We can’t just paste in new, random
definitions for established terms-we need to make sure that these new definitions imply the
same things as the old ones! If we can show that our new definition implies the conditions in
metric spaces, we can link our two definitions of closed sets, where the topological variants of
the definitions are just a more abstract version of the metric variants. We now prove this exact
claim.

Theorem 2.1. If X is a topological set and A is a closed set in X (as detailed in Definition 2.11),
then A contains all of its boundary points. [4]

Proof. Let Abe aclosed set in the manner that it is described in Definition 2.11 (it contains all
of its boundary points). We need to show that all the boundary points of A are in A. If A has
no boundary points, the claim is vacuously true. But what if A does have boundary points? Let
a be a boundary point of A. We proceed using proof by contradiction.

By way of contradiction, let us assume that a is not in A. Since A is closed, thenX is open, as
defined in Definition 2.8 (the set is in 7, the topology of X). So « is in an open set that is in 7.
This, however, is a contradiction, since this implies that a has a neighborhood that does not
contain points in A, even though « is a boundary point, meaning that any open set with a in
it needed at least one point in A. Therefore, our initial assumption is false: in the context of
topological spaces, if A is closed, it contains all of its boundary points. |

Delightfully, our two definitions for closed sets corroborate each other! Since we used our
proposed topological definitions of both open and closed sets to indicate the same conclusions
that our metric-space closed set definitions do, we can conclude that our open set definitions
are consistent with each other as well. With this powerful connection, we can view metric
spaces as a special case of topological spaces.

2.3 CONTINUITY IN TOPOLOGY

Since distance can’t be assumed in topological spaces, we also must redefine continuity,
which uses the § — € scheme in traditional vector calculus. Believe it or not, we've not only
already seen the topological definition, but we've also proved that it’s equivalent to the calculus
version! (See Problem Set 2, Proofy Problem 2.) As a refresher, here is the definition again:

Definition 2.12 (Continuity, Topological Form [4]). A function f: X — Y is continuous if and
only if, for all U open in Y, the pre-image of U is open in X.



3 HOMEOMORPHISMS

3.1 DEFINITION AND THEOREMS

With the new definition of continuity, we can use it to uncover a topological form for the
concept of equality, which is less strict than the form we're used to. The relations of equality
in topology are called homeomorphisms, which we will now formally define.

Definition 3.1 (Homeomorphism [4]). A homeomorphism is a function f: X — Y between
two topological spaces X and Y that

1. is a continuous bijection, and
2. has a continuous inverse function f~!.

Homeomorphisms are the topological equivalent of the concept of equality—however, do
the properties of equality translate to define the properties of homeomorphisms? Let’s start by
trying to prove that compositions of homeomorphisms are homeomorphic.

Theorem 3.1. If f : X — Y is a homeomorphism and g: Y — Z is another homeomorphism,
then the composition go f : X — Z is also a homeomorphism. [4]

Proof. Let f and g be homeomorphisms. We need to prove go f : X — Z is a homeomorphism,
so we want to show that the two conditions of a homeomorphism hold; namely:

1. gof:X — Zis continuous
2. There exists an inverse of (go f) that maps Z — X and it is continuous.

Condition 1. Since f is a homeomorphism and g is a homeomorphism, both are continuous
functions. Hence go f is also continuous, since we proved in 22a that the composition of
continuous functions are also continuous.

Condition 2. Again, since f is a homeomorphism and g is a homeomorphism, their re-
spective inverses, f~! and g~!, exist and are continuous. So f~!o g~! must also exist. We
verify:

(goflo(fog™
=go(fof hog™
=gog™!

- Iy.

Similarly:
(frog™holgof

=flo(gloglof
:f_lof



= Iy.

So our proposed function, when given the original function has an input, results in an
identity matrix. The same results when the original function is given the proposed function
as an input. So there exists a continuous inverse of (g o f) that maps Z — X. Since both
conditions are met, then we can conclude that g o f is a homeomorphism. |

In the proof above, we used homeomorphisms to classify functions. We can also use homeo-
morphisms to classify spaces: the term homeomorphic is used for spaces if a homeomorphism
exists between them. We formalize this in the following definition.

Definition 3.2 (Homeomorphic [4]). Two topological spaces X and Y are homeomorphic if
there exists a continuous map f : X — Y and a continuous inverse f~!: Y — X, implying that

fOf_IZIy andf_IOf:IX.

Now that we can classify spaces as homeomorphic, perhaps you may wonder: are the prop-
erties of "equality" of homeomorphisms enough to obey the rules of equivalence relations, a
concept from Math 22a? We introduce and prove the following theorem on homeomorphisms
and equivalence relations.

Theorem 3.2. A homeomorphism forms an equivalence relation on the class of all topological
spaces [4]. More specifically, homeomorphisms meet the three criteria for an equivalence
relation:

1. (Reflexivity). X is homeomorphic to X.
2. (Symmetry). If X is homeomorphicto Y, then Y is homeomorphic to X.

3. (Transitivity). If X is homeomorphic to Y, and Y is homeomorphic to Z, then X is
homeomorphic to Z.

Proof. We prove that each of the conditions hold.

Condition 1: Reflexivity. To show that X is homeomorphic to X, we need to determine if
there exists a continuousmap f : X — X anditsinverse, f~! : X — X, implying that fo f~! = Ix
and f~!o f = Ix. Since the input and output spaces are the same, we just take the identity
map as our function f.

Condition 2: Symmetry. Let X be homeomorphic to Y. This implies that there exists
some function f: X — Y between X and Y such that f is a continuous bijection and has a
continuous inverse function f~!. To show that Y is also homeomorphic to X, we want to
find a function g: Y — X between Y and X such that g is a continuous bijection and has a
continuous inverse function g~!. Let’s set the inverse function f~! as the function g: ¥ — X,
and the function f as the inverse function g~ : X — Y. We know that g = f~! is a continuous
bijection since f~! is continuous and is a bijection because f is a bijection. Also, g7! = fis
continuous since f is continuous. So there must exist some function g: ¥ — X between Y
and X such that it is a continuous bijection and has a continuous inverse function g~!. Thus
Y is homeomorphic to X.



Condition 3: Transitivity. Recall from Theorem 3.1 thatif f : X — Y is a homeomorphism
and g : Y — Z is another homeomorphism, then the composition go f : X — Z is also a
homeomorphism. Since we can take go f: X — Z as a homeomorphism from X to Z, then X
and Z are homeomorphic.

Thus homeomorphisms satisfy all three conditions for equivalence relations on the class of
all topological spaces. |

The classes of all topological spaces are also called homeomorphic classes [4]. In our
example section, we will explore the physical implications of two objects being in the same
homeomorphic class.

3.2 EXAMPLES OF HOMEOMORPHISMS

To peel away the abstractness of homeomorphismes, it’s important to show how they can be
applied to some concrete functions. Let’s launch into an example.

Example 1. Let X = (1,00) and Y = (0, 1). Are these spaces homeomorphic?

Solution. Recall that two topological spaces are considered homeomorphic if there exists a
continuous function f: X — Y and its inverse f~!:Y — X. First, we must identify a function
f that maps from X to Y. Since we want this function to take inputs from 1 to oo, but remain
bounded between 0 and 1, let’s look into an asymptotic function. We try the simplest one:
fx) = % Indeed, this function takes any value from (1,00) as an input and spits out a value
(0,1), which makes it a candidate for our homeomorphisms! We now verify this statement.

By Definition 3.1, to show that f : X — Y is a homeomorphism, the following conditions
must be met:

1. fisa continuous bijection, and
2. f has a continuous inverse function £~

Condition 1. During lecture, we showed that f is continuous. To show that f is bijective, we
prove that it is both injective and surjective.

Injective. Let x, y be values in X such that f(y) = f(x). Then % =1 s0x=y. Thus fis

=1,
injective.

Surjective. Let y be an element in Y. We can easily derive an x in X such that f(x) = % by
setting x = 1/y so f(y) = + = y. Since y can’t be 0, there’s no danger of deriving an undefined

<~

value. Thus f is surjectiv

@

Condition 2. f~' can be represented as g(x) = % Again, we know from our work in 22b that

L is continuous, so f has a continuous inverse function.

X

Therefore f is a valid homeomorphism, so X and Y are homeomorphic. This example
may seem simple, but it’s actually quite illuminating considering that X was bounded but
Y was not. In topology, then, we can essentially stretch a bounded set to match up with an
unbounded one!



We can apply this idea of "stretching" to the coffee mugs and donut example from before.
The graphic below visually shows how a topologist could see a coffee mug and donut as one

. 0006

eee®
oPoeP

Figure 3.1: The donut (top left) slowly transforms to a coffee mug (bottom right) [10].

4 HOMEOMORPHISMS BETWEEN LETTERS OF ALPHABET

As a culminating exercise, we apply our study of homeomorphisms to categorize the twenty-six
letters of the English alphabet used to write this very paper. (To standardize our analysis due
to the many typefaces that exist, and to follow convention, we use the Sans Serif KIEX font to
represent letters in this section [4].)

4.1 HOLES, VERTICES, AND CONNECTEDNESS

To build the background necessary to complete this exercise, however, let’s first explore how we
can use the idea of "stretching" to classify letters. Notice that, from the donut-to-coffee-mug
example, there is one core similarity between the two that remained consistent even while
being transformed: the hole! The reason is because these transformations don’t allow us to
tear apart the surfaces in question, so we can never get rid of the hole via the deformation
used to stretch the donut into a coffee cup. We generalize this observation in the following
definition.

Definition 4.1 (Holes [5]). A hole in a mathematical object is a topological structure that
prevents the object from being continuously shrunken to a point.

We now have one method of classifying letters—by their number of holes—since no topo-
logical deformations can remove these holes. For example, P has one hole at its top while B
has two holes stacked on top of each other. Thus P and B must belong to separate "groups" in
our classification.

But are there other methods to classify letters on an even more specific level? In other words,
are there any distinguishing features in letters besides the presence of holes? The answer is yes.
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Figure 4.1: An object with one hole is homeomorphic to any other object with one hole (top
row), and an object with one hole cannot be homeomorphic to an object with no
hole (bottom row). Figure by authors adapted from [4].

In the letter P, besides having one hole, it also has another distinguishing feature: the number
of intersections between different curves in the letter.

Figure 4.2: The one intersection in the letter P is highlighted by the red circle. Figure created
by the authors.

Even though such intersections—also known as vertices—can be visually identified, we'd
like to formalize what they are in topology (just as we did with holes). To do that, let’s first
delve into the idea of spaces being connected.

Intuitively, we say a space is connected if it exists in one piece, meaning that we cannot split
the space into the union of two disjoint open sets and their respective boundary points. A
more rigorous definition follows:

Definition 4.2 (Connected [4]). A space X is connected if, when decomposed as the union
AU B of two nonempty subsets, then (AU APYNB # @ and An (BuU BP) # @, where AP are the
boundary points of A and B are the boundary points of B.

Before using connectedness to define intersections in our letters, we first need to prove that
homeomorphisms preserve connectedness. That way, if we use the notion of connectedness
to define vertices, we can argue that the intersections in a surface cannot be eliminated via
continuous deformation.

Theorem 4.1. If f : X — Y is a homeomorphism, then X is connected if and only if Y is
connected [4].
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In order to prove the theorem, we first prove a couple of lemmas.

Lemma 4.2. If X is connected, then the only subsets of X that are both open and closed are X
and @ [4].

Proof. Let X be connected. Assume, by way of contradiction, that there exists a set A # @ and
A # X such that it is both an open and closed subset of X. Let B be a set such that B= X\ A.
This implies that An B = @. Because A is closed, B is open, and since A is open, B is closed. So
B is both open and closed. Since both A and B are closed, both sets contain their respective
boundary points:

A=AUAP,B=BUB’.

It then follows that
6=AnB=(AuAP)nB=An(BuUBP).

This is a contradiction since we assumed X is connected. Thus the initial assumption must be
false, so the only subsets of X that are both open and closed are X and @. |

We use the previous lemma to prove the next lemma:
Lemma 4.3. The continuous image of a connected space X is connected [4].

Proof. Let f: X — Y be a surjective continuous function. If A c Y such that A is both open
and closed, then f~!(A) is also both open and closed since f is continuous. Since f~!(A) is
both open and closed and X is connected, then f ~1(A) must either be equal to X or @, as per
Lemma 4.2. Therefore A is either equal to Y or @, so Y is connected. |

We now return to our proof of the theorem, which follows naturally from the lemmas above.

Proof. Since the continuous image of a connected space X is connected, we can immediately
conclude that if f : X — Y is a homeomorphism, then X is connected if and only if Y is
connected. |

We apply our understanding of connectedness to formalize the idea of intersections, or
vertices.

Definition 4.3 (n-vertex [4]). An n-vertex in a subset L of a topological space S is an element
v € L such that there exists some neighborhood Ny c S of v where all the neighborhoods
N c N of v satisfy the following properties:

1. NnLisconnected.

2. The set formed by removing v from N N L is not connected, and is composed of exactly
n disjoint sets, each of is connected.

Notice that the floor is open for multiple types of vertices! There can be 4-vertices, 3-vertices,
and even 2-vertices. (While the 2-vertex does exist, the idea is somewhat useless to us in the
context of classifying letters of the alphabet. We could simply pick any point in the curve that
isn't intersecting another curve and call it a 2-vertex, so there would be an infinite number for
each letter. Thus when classifying surfaces, we will stick to an n of at least 3 for n-vertices.)

12
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Figure 4.3: Examples of a 2-vertex (top), 3-vertex (middle), and 4-vertex (bottom) preserved
via homeomorphisms. Figure by authors adapted from [4].

4.2 CLASSIFYING THE ALPHABET

Since we proved earlier that homeomorphisms preserve connectedness, we know that, just
like with holes, n-vertices depend entirely on the topology of a surface. What follows is a
powerful conclusion. If two letters in our alphabet have the same number of n-vertices and
holes, we can categorize them into the same homeomorphic class. Within a single class, we can
also continuously deform any letter in the class to become any other letter in the same class. We
are now ready to classify the letters of the English alphabet into 8 resulting classes:

1. (0 holes, 0 3-vertices, 0 4-vertices): CGIJLMNSUVWZ
2. (1 hole, 0 3-vertices, 0 4-vertices): D O

3. (0holes, 1 3-vertex, 0 4-vertices): EF T Y

4. (1hole, 1 3-vertex, 0 4-vertices): P

5. (0 holes, 2 3-vertices, 0 4-vertices): H K

6. (1 hole, 2 3-vertices, 0 4-vertices): A R

7. (2 holes, 2 3-vertices, 0 4-vertices): B

8. (0 holes, 0 3-vertices, 1 4-vertex): X

9. (1 hole, 0 3-vertices, 1 4-vertex): Q

We invite the reader to explore homeomorphisms between letters of their own unique
handwriting, or between the alphabets or characters of other languages.
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5 CONCLUSION

Our examination of point-set topology gives us a toolkit to further explore the broader field of
topology. Using the presented definitions of metric spaces, topological spaces, and homeo-
morphisms from extending set theory to point-set topology, we have explored the connection
from Math 22b concepts in a novel context.

To delve further into this field, there are several natural extensions of point-set topology into
other topology disciplines. For example, algebraic topology extends upon homeomorphic-
like classifications to define other topological invariants like homotopies, homologies, and
cohomologies that can also be used to categorize alphabet letters. Differential topology
specifically studies objects with "smooth" structures, while geometric topology focuses on a
type of shape called a manifold. Along with the applications presented in the introduction to
biology, computer science, and even our everyday lives, the mathematics of topology yield a
rich and versatile tool that we hope may be part of your future.

allih o )
Corporate needs you to find the differences
between this picture and this picture.

They're the same picture.

Figure 5.1: Figure courtesy of r/mathmemes.
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