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Executive Summary

The trucking industry lies at the heart of the U.S. economy, moving 71% of freight annually
and contributing over $700 billion to GDP [1]. However, in recent years, as the need for
transportation has dramatically increased, the fuel consumption of diesel trucks has bal-
looned to 12% of total U.S. fuel usage. As more and more electric trucks will replace the
diesel ones, an infrastructure for the electric truck system is needed. In this paper, we ex-
plore and develop mathematical models to help aid in building the basic infrastructure and
utilities needed for a successful electric truck system in the U.S.

We started by creating two differential equations to model the annual change in number of
electric and diesel trucks. We used Python code to graph the predicted number of electrical
and diesel trucks in the next 20 years. We discovered an influx of adoption in the first
5 years, which tapered off toward the 10-20 year marks. This allowed us to analyze the
spread of electric trucks in the next 5, 10, and 20 years assuming a pre-existing electric semi
infrastructure network.

In our second part, we sought to calculate the number of charging stations and charging units
needed at each of 5 key U.S. transportation corridors. To do so, we developed and trained
a mathematical model that took into account the average annual regional temperature of
the corridor, the distance of the corridor, charge of truck, charging speed, and miles per
energy spent. With this model, we discovered that combination of high charge times with
low ranges for electric trucks required a large number of chargers per station, which may
be difficult to implement in the real world without a future advancement in electric truck
technology.

We then looked at the economic and environmental benefits of electric trucks. Assuming that
replacing diesel with electric trucks contribute to the economy and improve the environment,
we used an index called the Eco-Friendly Behaviors Rank to link the receptiveness of each
state to the more environmentally-friendly electric trucks. As with the previous portion, this
allowed us to take into account regional differences among community values, as some com-
munities may value economic growth over environmental friendliness, while others cherish
the opposite. Using these two main factors, we developed our own Community Motivation
for Development. It was found that the communities with the greatest motivation to de-
velop electric truck charging stations were (in order from greatest to least) Los Angeles-San
Francisco, Minneapolis-Chicago, San Antonio-New Orleans, Jacksonville-Washington D.C.,
and Boston-Harrisburg.

The potential for the growth of electric trucking in the United States is challenging, yet
exciting. Before a large fleet of electric trucks spanning the entire country can become a
reality, it is imperative that strong infrastructure is developed. Our models help identify
key factors to adoption such as life cycle costs, as well as help determine which communities
would be ideal to host such large electric truck charging stations. Ultimately, we hope that
these methods can help spread the adoption and advancement of electric trucks.
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0.1 Global Assumptions
• No energy shocks that would drive the price of gas or electricity up/down. This assumption is imperative

because attempting to account for volatile factors such as future energy shocks would make model
development nearly impossible [2].

• We look only at the U.S. trucking industry. By looking only at United States trucking data, we can
ensure standardized metrics. In addition, the transport corridors referred to in parts 2 and 3 are all in
the U.S.

• Predictions of future electric truck statistics are accurate. It is difficult to predict the market even 5
years from now, but all cited statistics are from credible sources and predictions should be taken as
reasonably accurate. Sensitivity analysis is provided to account for possible deviations in predictions.
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1 Problem-Solving Process

1.1 Shape Up or Ship Out
Diesel trucks, which account for 12% of the total fuel purchase in the US, have been responsible for global air
pollution. Therefore, a replacement, electric semi trucks, has been invented to alleviate the problem. This
part predict the rate of electric semi-truck usage over the next 5, 10, and 20 years.

1.1.1 Local Assumptions

• More people will buy electric semi-trucks if they are cheaper to operate and offer more convenience than
diesel trucks. We assume that there are no illogical biases against electric trucks or diesel trucks.

• Diesel truck life is 12 years. [3]

• We ignore government subsidies and others who pay no attention on electric trucks.

• Electric trucks and diesel trucks are substitutes.

• Number of first-time consumers per year of semi-trucks remains constant.

• A constant fraction of the current number of trucks break down each year according to the lifespan of
an electric and diesel car, respectively.

• A constant fraction of semi-truck consumers will buy electrical trucks.

• When referring to semi-trucks, the term “truck” will be used, which does not refer to non-semi-trucks.

1.1.2 Model Development

t is the time in years from 2020. Let Te and Td be the number of electrical and diesel semi-trucks, respectively,
being used in the U.S. Let ce and cd be the proportion of consumers looking for semi-trucks that buy electrical
and diesel semi-trucks, respectively, such that c1 + c2 = 1. Let D be the total first-time buyer demand for
semi-trucks in the U.S., quantified by the number of consumers per year. ke and kd represent the proportion
of electrical and diesel semi-trucks, respectively, that will break down.

Every year, out of the total D first-time buyers, ceD of them will buy electric trucks and cdD will buy
diesel trucks. Also, out of the current Te electric trucks, keTe of them will break down, decreasing the number
of electric trucks by this amount. Similarly, kdTd of the current Td diesel trucks will break down each year.

Therefore, we get the following differential equations:

dTe

dt
= ceD − keTe (1)

dTd

dt
= cdD − kdTd (2)

Solving by separating variables, we get

Te = −
mee

−ket

ke
+

ceD

ke
(3)

Td = −mde
−kdt

kd
+

cdD

kd
(4)

where me and md are constants.
Now, we will find values for each of the constants D, ce, cd, ke, kd,me,md.
D represents the number of first-time consumers of all trucks. This will be based on truck statistics of

the time period 2001-2018 from Statista [4]. From this data, an algorithm was used to determine various
statistics. The mean of the class 8 semi-truck sales was 183888 trucks, with a standard deviation of 51775
trucks. A linear regression using Wolfram Alpha [5] yields a line of best fit of
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T = 3201.24t+ 153477, R = 0.321 (5)

where T is the total number of truck sales after t years since year 2000. Given the low slope of the line
(less than 2 percent of the average truck sale) and the relatively low correlation coefficient, no meaningful
linear relationship exists between t and T. Therefore, we can safely assume that class 8 semi-truck sales will
remain relatively constant over the next 20 years. We will set D as the average annual semi-truck sales over
the last 18 years, or 183888.

ke and kd represent the proportion of electrical and diesel semi-trucks that will break down every year.
The projected electrical and diesel semi-truck lifespans over the next years are 10 and 12 years, respectively
6. Therefore, every year, approximately 1

10 = 0.1 and 1
12 = 0.0867 of electrical and diesel semi-trucks,

respectively, will break down. This yields the values ke = 0.1, kd = 0.0867.
ce and cd represent the proportion of consumers looking for semi-trucks that will buy electrical and diesel

semi-trucks, respectively. To find these two coefficients, we will use a combination of the cost difference
between electrical and diesel truck operational costs and the demand sensitivity due to price. According to
the 2019 Electric Vehicle Outlook Report by BloombergNEF [6], approximately 57% of all passenger vehicle
sales will be electric by 2040. Assuming that all necessary electric semi infrastructure is already in place now
(given in the problem statement), we can assume that at least 57% of all semi-truck sales will be electric
over the time period from 2020 to 2040. This implies that ce = 0.57 and cd = 0.43.

Plugging in the values for the coefficients, we have

Te = −
mee

−0.1t

0.1
+

0.57 ∗ 183888
0.1

(6)

Td = −mde
−0.0867t

0.0867
+

0.43 ∗ 183888
0.0867

(7)

In the problem statement, we are given that a few hundred electrical trucks will “roll off Tesla’s line,” so we
approximate Te(0) = 500. We know that Td(0) = 1800000. From this, we get me = ce ∗ D − 500 ∗ ke and
md = cd ∗D − 1800000kd. From these numbers, Figure 1 was created, graphing electrical, diesel, and total
semi trucks over time for the next 25 years. Figure 2 shows the projected percentage of all semi trucks that
will be electrical over time.

1.1.3 Results

Figure 1: Projected numbers of trucks over time
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Figure 2: Projected percentage of electric trucks over time

Since the introduction of electric trucks brings tangible economic and environmental benefits, there will
be a huge demand for electric trucks. Therefore, we expect a dramatic shift from diesel trucks to electric
trucks and increase in the purchase of electric trucks in the first five years. However, as time proceeds, we
don’t expect this growth to sustain in the following 10 years because we assume that the number of purchase
of both types of trucks remain constant.

1.1.4 Sensitivity Analysis

Each of the constants were increased and decreased by 10% and the resulting changes in the proportion of
electric trucks in 5, 10, and 25 years were measured and placed in the following table. Based on the variables
D, the first-time buyer demand, ce, proportion of consumers that will buy electric trucks, cd, the proportion
of consumers that will buy diesel trucks, ke, proportion of breakdown of electrical cars, kd, proportion of
diesel trucks that will breakdown, and me and md, which are arbitrary constants derived from the differential
equations. When either truck’s proportion of breakdown increases, the consumption of that type of truck
tends to increase because people need to get new trucks for further operations. In contrast, when either
truck’s proportion of breakdown decreases, the consumption of that type of truck tends to decrease because
people are less likely to get new trucks for further operations. When either truck’s consumption goes up,
the proportion of that type of truck will increase because of consumer spending.

Table 2.1.3 Sensitivity analysis for Part I
Constant % Change of

Constant
% Change in propor-
tion of electric trucks
in 5 years

% Change in propor-
tion of electric trucks
in 10 years

% Change in propor-
tion of electric trucks
in 20 years

D 10 13.74 4.54 1.21
D -10 -16.89 -5.57 -1.49
Ke 10 -1.79 -2.98 -4.27
Ke -10 1.82 3.08 4.53
Kd 10 9.07 7.77 5.58
Kd -10 -9.29 -8.26 -6.31
Ce 10 18.88 8.92 5.19
Ce -10 -21.08 -9.99 -5.83
Cd 10 -4.55 -4.68 -4.84
Cd -10 5 5.15 5.35
me 10 -12.5 -4.69 -1.09
me -10 11.68 4.48 1.061
md 10 -2.99 -2.07 -0.94
md -10 3.17 2.15 0.97
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1.1.5 Strengths and weaknesses

Since the model used in this projection was analytically solvable, no approximations were necessary in order
to perform calculations, improving the quality of the predictions made by the model. The 48% of increase
in the use of electric trucks is reasonable because there will be an increase of demand due to the benefits of
the electric semis, leading to an increase in the proportion of the electric trucks. Our sensitivity analysis, by
increasing and decreasing by 10%, it shows how the final results would fluctuate as the variables change in
values.

However, the simplicity of the model comes at a price. It assumes that the every year, the number of
electric and diesel semis bought remains constant. This assumption was chosen based on the stipulation that
the necessary semi infrastructure is already established, but it may neglect other factors such as improving
technology or changes of tastes.
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1.2 In It For the Long Haul
In order to provide sufficient electric support for drivers, we are considering the following in this section:

• Number of stations with different types of EVSE

• Number of chargers per station

In general, the time required to charge an electric truck is linearly proportional to the power of the
charger. The charger power denotes the efficiency of the charger (e.g. 80kw requires the truck driver 10
hours of charging, which 800kw, meaning a higher efficiency, requires the driver 1 hour of charging. However,
the higher the efficiency, the higher the expense of the charger).

1.2.1 Restatement of Problem

1. To run long routes, we need to create a mathematical model that determines how many stations and
charges are needed on the premise that all trucks were electric. We need to test the model with the
following routes:

• San Antonio, TX, to/from New Orleans, LA

• Minneapolis, MN, to/from Chicago, IL

• Boston, MA, to/from Harrisburg, PA

• Jacksonville, FL, to/from Washington, DC

• Los Angeles, CA, to/from San Francisco, CA

1.2.2 Local Assumptions

1. All trucks are long-haul and travel at an average speed of 55mph.

2. The lengths of the five routes, traveled by car, are the following:

• 541 miles from San Antonio, TX, to New Orleans, LA

• 408 miles from Minneapolis, MN, to Chicago, IL

• 390 miles from Boston, MA, to Harrisburg, PA

• 702 miles from Jacksonville, FL, to Washington D. C.

• 382 miles from Los Angeles, LA, to San Francisco, LA

3. The types of EVSEs at the charging stations are all DC Fast Charge. According to the Battery Data
document, the Level 1 and Level 2 EVSEs would require a charging time of greater than 10 hours,
which is not feasible for electric trucks, which are primarily designed to be daytime trucks (Battery
Data, MathWorks Math Modeling Challenge 2020, url). We will use 1MW for the power of a charger.

4. We consider only the Chanje V8100. The Chanje V8100 has been in service longer than the Cascadia
and the Tesla Semi. In addition, it has a shorter range, meaning that stations designed around its
range will automatically cover other electric trucks, which will have larger ranges.

5. T rucks will always charge to 100% capacity.

6. The total number of trucks on a route at any given point in time is equal to the Average Annual Daily
Truck Traffic (AADTT) average value across a route. [7]
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1.2.3 Model Development

Our model will take into account the average speed of a truck, the total charge of a truck, charging speed,
miles per energy spent, distance of the entire road, and temperature (when calculating battery efficiency).

Given that the proposed radius of the Tesla truck is 600 miles, the impact of temperature on battery life
is also taken into account. Typically, an EV will cover around 20 percent fewer miles in cold weather versus
beach weather. [8]

Numerous reports have indicated that colder weather results in lower ranges for electric vehicles such as
Teslas. According to a study by the AAA, this loss could be as high as 41 percent if the heater or AC is
used. [12]

Using a model created from data from the AAA report, we calculated the range efficiency of electric
vehicles in relationship to temperature. Let Ra and Rl be the actual and listed range of a truck, in miles.
We have

Ractual = Rlisted(0.1218 + 0.02766T − 0.0002127T 2) (8)

where T represents the average temperature of the corridor in degrees Fahrenheit, as determined by the
average of the average year round daily temperatures of the start and end points, and 0.1218 + 0.02766T −
0.0002127T 2 represents the coefficient of range reduction due to temperature. If the temperature is too high
or too low, the range of a truck will be much lower.

We recommend that trucks charge at 25 percent of capacity, so we are spacing our stations accordingly.
[10]

The actual distance a truck can travel before needing to charge is denoted by Ractual. After using up
0.75 of its charge, a truck must encounter another charging station, so the distance between charging station
must equal 0.75Ractual. We also know that the total distance between the two endpoints of a route must
equal the number of stations multiplied by the distance between stations, or

dendpoints = st ∗ 0.75Ractual (9)

where st is the number of stations we will place across the route. Therefore, we have

st =
dendpoints

0.75Rlisted ∗ (0.1218 + 0.02766T − 0.0002127T 2)
(10)

Given that we are modeling long haul transportation, it is safe to assume that the electric Chanjes travel at
an average range of 150, so we have Rlisted = 150. Plugging this in, we have

st =
dendpoints

112.5 ∗ (0.1218 + 0.02766T − 0.0002127T 2)
(11)

This completes the first part of our model. Now, we know that the time a truck can travel before charging
(TPC, in hours per charge) is equal to the total distance traveled per charge (Ractual) divided by the speed
of the truck (v, mph), so we have

TPC =
Ractual

v
=

Rlisted ∗ (0.1218 + 0.02766T − 0.0002127T 2)

v
. (12)

Next, we know that the number of trucks on the road (TRU , in trucks, collected with the AADTT data)
at a given point in time divided by the amount of time a truck can last without charging is equal to the
total number of charges on this route needed per hour. In order to keep all trucks charged at all points in
time, all charging stations must make charges at the same rate. Therefore, the total number of chargers (C)
divided by the charge time per truck per charger (CTC)must have the same charge per hour quantity.

Therefore, we have
TRU

TPC
=

C

CTC
. (13)

Solving for C, we have

C =
TRU ∗ CTC

TPC
,
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so by substituting in our value for TPC, we have

C =
TRU ∗ CTCv

Rlisted ∗ (0.1218 + 0.02766T − 0.0002127T 2)
(14)

We are assuming that we are using only using DC Fast Charge on Chanjes, which can charge in 1.5 hours
and has a listed range of 150 miles. We are also assuming that all trucks travel at 55mph, so by plugging in
these values, we have that the total number of chargers needed is equal to

C =
0.55TRU

0.1218 + 0.02766T − 0.0002127T 2
(15)

1.2.4 Results

We will now test our model on each of the 5 corridors. We will find the number of stations (st) and chargers
(C) needed for each of the 5 corridors.

Calculated st and C Values
Route TRU

(AADT)
T dendpoints st C C/st

TX-LA 14288 65.6 541 4.71 8288.76 1760
MN-IL 16735 46.5 408 3.83 9708.31 2535
MA-PA 9843 48.4 390 3.6 5625.85 1563
FL-DC 9429 62.9 702 6.12 5083.84 830
CA-CA 13975 59.4 382 3.35 7577.72 2262

AADT accessed through corridor data MathWorks Math Modeling Challenge 2020 and NOAA tempera-
ture

If we place stations so that drivers will charge when one-fourth of their battery’s charge is left, then
we will need very few stations to place chargers (3 in CA up to 6 in Florida). However, due to the high
charge time for electric trucks and the low distance ranges, a very large number of chargers are needed.
Thus, electric trucks with their current capabilities in charging speed and range are not feasible for long haul
driving.

1.2.5 Strengths and weaknesses

One strength of this approach is that it takes into account regional weather and how that affects the range of
electric trucks. This seemingly small factor actually has big impact on battery performance, as demonstrated
by our sources. This detail allows our model to tailor a region-specific suggestion for each corridor, thereby
increasing the accuracy. Another strength of this model is that it has a built-in margin of error taking
into account 3 factors– the 25% charging rate, the lowest range (the Chanje), and the negative impact of
temperature on range.

One unique aspect to our model is that it places greater preference on fewer stations with larger number
of chargers per station. Though this will result in mega-stations, with the largest (MA-PA) having 2535
chargers in each station, the large size is also a strength, as it allows for more centralized repairs.

This model has several weaknesses. One is the assumption that the AADT of the sections without listed
AADT data was equal to the average . This assumption, due to the missing data on the annual average
daily truck traffic, was a necessary one, as it would not have been possible to develop our model without
continuous data on the AADT Originally, we considered using population density to predict AADT by
county, but given our time constraints, it proved to take too long. Another weakness was the assumption
that there are a constant number of chargers at each station. In reality, stations with greater traffic should
have greater number of chargers, but this assumption was important for developing the model in a timely
manner.
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1.3 I Like to Move It, Move It
As we have previously discussed, the use of electric trucks has possible benefits on both the environment
and economy. In this section, we evaluate the benefits on both parts and figure out whether economic or
environmental development should be targeted first by computing two composite scores.

1.3.1 Restatement of Problem

1. Electric trucking can bring enormous benefits to our environment and economy. In this scenario, we
need to design a mathematical model to evaluate which communities value these two facets of electric
trucking charging stations.

1.3.2 Local Assumptions

1. On average, two people will operate a single electrical truck charger, resulting in two jobs created per
charger

2. Each charging station contributes a constant amount of revenue to the state, adding to its GDP.

3. Total amount of CO2 emissions due to trucks is proportional to the average Average Annual Daily
Truck Traffic (AADTT) across that route.

4. More Eco-Friendly Behavior implies that more people value the environment over the economy.

5. Carbon Dioxide emissions due to trucks are directly proportional to the average AADTT across a
route.

6. Higher air pollution and carbon dioxide emissions imply that a state is more likely to benefit from
transitioning to electric trucks.

7. All surveys are accurate.

1.3.3 Model Development

Our model uses a weighted average of Economic and Environmental impacts to determine community mo-
tivation for electrical trucking development. Data is gathered from each of the 5 corridors indicated in the
problem statement.

Total community motivation for the change will be denoted by M , a real number between 0 and 1.
Economic and Environmental factors will be quantified by numbers between 0 and 1. The weights of each
of the factors will be denoted by wE , wN respectively, with wE +wN = 1. Each of the weights will be based
off of survey data.

Therefore, we have

M = wEE + wNN (16)

Weights
We define wE and wN to be how important Economic and Environmental factors matter to the people of

the communities around each route. For each route, we will take the average of the Eco-Friendly Behaviors
Rank ([9]) of each state across the route and divide by 50 to get wE . A lower position in the rankings
indicates that the citizens in the state value their environment and economy more, which would imply a
higher wE value. To obtain wN , we calculate 1− wE .
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Calculated Weights
Route Eco Friendly

Rank
wE wN

TX-LA 39 0.78 0.22
MN-IL 13.67 0.27 0.73
MA-PA 11.4 0.23 0.77
FL-DC 35.5 0.71 0.29
CA-CA 2 0.04 0.96

Economic Factor
We will denote the quantified Economic factor by E. This will be based off of the total revenue from the

charging station and the total number of jobs created. Revenue will be quantified by a unitless quantity
Rev between 0 and 1, normalized by the maximum expected revenue of the 5 corridors. We have assumed
that revenue is proportional to number of stations. Similarly, number of jobs will be quantified by a unitless
quantity Job between 0 and 1. We have assumed that the number of jobs created is proportional to the total
number of chargers in the corridor. These two values are chosen because total revenue and jobs gained by the
state both contribute to the economic development of the region, which is desirable for many communities.
To calculate the aggregate Economic factor, we will take the average of Rev and Job :

E =
Rev + Job

2
(17)

Environmental Factor
We will denote the quantified Environmental factor by N. This will be calculated based on the current

total amount of carbon dioxide emissions and the current air pollution levels in the area. Total carbon dioxide
emissions will be calculated based on the Average Annual Daily Truck Traffic (AADTT) values of the routes.
Air pollution levels will be measured by the average exposure of the general public to particulate matter
of 2.5 microns or less ([11]), normalized to a score between 0 and 1. Again, each of the two values will be
calculated by the average of the values for each of the states along the path of the corridor. Carbon dioxide
emission levels are used because transitioning towards electrical vehicles will decrease the total amount of
carbon dioxide emission levels. Current air pollution levels are used because a state with more air pollution
would benefit more from transitioning to electrical trucks. To calculate the aggregate Environmental factor,
we will take the average of Tru and Air :

N =
Tru+Air

2
(18)

We will now find the Economic values for each of the 5 corridors and present them in a table.
Calculated Economic Factor E

Route Total Sta-
tions

Total Charg-
ers

Rev Job E

TX-LA 4.71 8288.76 0.77 0.85 0.81
MN-IL 3.83 9708.31 0.63 1.00 0.82
MA-PA 3.6 5625.85 0.59 0.58 0.59
FL-DC 6.12 5083.84 1.00 0.52 0.76
CA-CA 3.35 7577.72 0.55 0.78 0.67

The Tru values will be calculated using the average AADTT values along each route and dividing by the
maximum average.
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Calculated Tru Values
Route Average

AADTT
Tru
Value

TX-LA 14288 0.85
MN-IL 16735 1.00
MA-PA 9843 0.59
FL-DC 9429 0.56
CA-CA 13975 0.84

Each AADTT value was divided by 16735, the maximum average AADTT, to obtain the Tru Factor.
Now, we calculate the Air Factor for each relevant state and present them in a table.

Calculated Air Values
State Air Pollution

Level
Air Value

Texas 8.4 0.66
Louisiana 7.9 0.62
Minnesota 6.6 0.52
Wisconsin 6.8 0.53
Illinois 9.3 0.73
Pennsylvania 9.2 0.72
New Jersey 8.1 0.63
New York 6.6 0.52
Connecticut 7.2 0.56
Massachusetts 6.3 0.49
Florida 7.4 0.58
Georgia 8.3 0.65
South Carolina 7.4 0.58
Virginia 6.9 0.54
California 12.8 1.00

Air normalized values are calculated by dividing the Air Pollution Level by 12.8, the maximum in the
U.S. By taking averages for each of the routes, the Air values for TX-LA, MN-IL, MA-PA, FL-DC, and
CA-CA are 0.64, 0.59, 0.61, 0.59, and 1.00, respectively. By averaging the Tru and Air values, we can
calculate the total Environmental factor N.

Now, we present our final wE , wN , E,N values and use the aforementioned formulas to calculate total
community motivation M in the following table:

wE , wN , E,N,M values
Route wE wN E N M
TX-LA 0.78 0.22 0.81 0.75 0.80
MN-IL 0.27 0.73 0.82 0.80 0.81
MA-PA 0.23 0.77 0.59 0.60 0.60
FL-DC 0.71 0.29 0.76 0.58 0.71
CA-CA 0.04 0.96 0.67 0.92 0.91

1.3.4 Sensitivity

Table 2.1.3 Sensitivity analysis for Part I
Constant % Change of

Constant
% TX-LA % MN-IL
% MA-PA % FL-DC
% CA-CA

we 10
wd -10 1.000152560801425 0.9980908595187932 -5.57
-1.49
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1.3.5 Results

Our model used a robust combination of both Economic and Environmental factors, taking into account
revenue, jobs, CO2 emissions, and air pollution. Then, the weights of each type of factor was calculated
based on how much a state valued the economy over the environment. Finally, a weighted average was taken
to determine a community’s overall motivation to begin truck development.

Overall, our models predicts that the Los Angeles to San Francisco (CA-CA) route should be targeted for
electric truck charging station development first, as it has the highest M value (Community Motivation for
Development). This was a result of the high community value of the Environment over the Economy and the
high air pollution values in California. The next two optimal routes for development were the Minneapolis to
Chicago (MN-IL) route and the San Antonio to New Orleans (TX-LA) route. Both of these corridors would
benefit greatly due to both economic and environmental factors, but the states along the two routes valued
the Environment and the Economy more, respectively. The Jacksonville to Washington D.C. (FL-DC) route
had the second least community motivation for development, as it already had relatively low air pollution
and CO2 emission levels, yielding a low N value. Finally, Boston to Harrisburg (MA-PA) had the lowest
predicted motivation for development, with low E and N values, meaning that they would not benefit greatly
economically or environmentally.

1.3.6 Strengths and weaknesses

Our model took into account both economic and environmental factors, both of which are the two primary
motivations for constructing electrical truck charging stations. In addition, it was able to take into account
the community’s attitude towards the economy and environment. Our model also produced a strong and
significant result: the California corridor would improve greatly as the citizens place a large emphasis on the
environment, and the current CO2 and air pollution levels are the highest in the U.S.

However, our model did not take into account the high starting cost for building chargers. In Part 2, we
found that a very large amount of charging stations would need to be built to support the current amount
of trucks, which would require a great deal of starting capital. In addition, political factors and government
subsidies were not taken into account, both of which play a large role in the total community motivation
towards electric truck development. For example, a more economically conservative community might view
any government expenditure negatively.
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2 Conclusion

2.1 Future Studies and Research
This modeling project raised many questions and insights for further exploration. In the first question, we
assume that all the infrastructure was pre-built, which in the real world, is difficult, if not impossible to do.
To improve our model, we could find a coefficient for adoption based on the number of existing charging
stations (i.e. the more charging stations the more receptive companies are to purchasing electric trucks). In
addition, the third model could be improved by considering another factor that causes communities to adopt
new truck charging stations– the name recognition. Having the positive image of a clean energy charging
station associated with a town, though harder to quantify, could be a strong pull factor toward motivating
communities to house large charging centers. Finally, our first and third models could both be strengthened
by taking into account government subsidies. Since this varies at the state level, this approach would be
tedious, but could yield important insights into the willingness people and their communities are willing to
adopt and support the growing electric truck movement.

2.2 Summary

In this research, our first model used differential equations to model future demand for electric vehicles.
Taking into account the number of first time buyers of trucks, the breakdown rate of both diesel and electric
trucks, this model assumes a fixed number of buyers per year of trucks, and reveals that the level of . This
can be improved by modeling the growth of trucks as non-constant growth, further improving the accuracy
of our model.

In the second part, we sought to find how many charging stations and charging units would be needed along
5 major trucking corridors. Our model took into account the impact weather can have on battery efficiency
(and thus the range), the range, and the charging time for a full charge. Our model, however, lacks consistent
data, as the given sources vary by state. In the future, we could strengthen the data and thus the model by
seeking alternative methods to derive the AADT.

In the third part, we sought to model how receptive the communities around the 5 given major corridors
are to trucking charging stations based on their regional Eco-Friendly Behaviors index and their economic
receptivity. We found that the communities with the greatest motivation to develop electric truck charging
stations were (in order from greatest to least) Los Angeles-San Francisco, Minneapolis-Chicago, San Antonio-
New Orleans, Jacksonville-Washington D.C., and Boston-Harrisburg.
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3 Appendix
Modeling for Part 1:

1 import numpy as np
2 from scipy.integrate import odeint
3 import matplotlib.pyplot as plt
4 from matplotlib import pylab
5 from pylab import *
6
7 N = 100000
8 t = linspace(0,100,N)
9
10 #### - Constants
11 D = 183888
12 ke = 0.1
13 kd = 0.0867
14 ce = 0.57
15 cd = 0.43
16 me = ce*D-500*ke
17 md = cd*D-1820483*kd
18
19 def getTe(t):
20 return -me*exp(-ke*t)/ke+ce*D/ke
21
22 def getTd(t):
23 return -md*exp(-kd*t)/kd+cd*D/kd
24
25 def getPercentA(a,b):
26 return a/(a+b)*100
27
28 p = 0.1
29 values = [5,10,20]
30 outputs = [[0,0,0],[0,0,0]]
31 for i in range(len(values)):
32 va = getPercentA(getTe(values[i]),getTd(values[i]))
33 md *= (1-p)
34 vb = getPercentA(getTe(values[i]),getTd(values[i]))
35 outputs[0][i] = (vb-va)/va-mod((vb-va)/va,0.0001)
36 md *= (1+p)/(1-p)
37 vc = getPercentA(getTe(values[i]),getTd(values[i]))
38 outputs[1][i] = (vc-va)/va-mod((vc-va)/va,0.0001)
39
40 print("md")
41 print(outputs)
42
43 rcParams["axes.grid"] = True
44 rcParams[’font.size’] = 14
45 rcParams[’axes.labelsize’] = 18
46
47 figure()
48 subplot(211)
49
50 plot(t,getPercentA(getTe(t),getTd(t)))
51
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52 ylabel("Percent of electric trucks")
53
54 xlabel("Time (years)")
55 axes = plt.gca()
56 axes.set_xlim([0,25])
57 axes.set_ylim([0,100])
58
59 a = getPercentA(getTe(5),getTd(5))
60 b = getPercentA(getTe(10),getTd(10))
61 c = getPercentA(getTe(20),getTd(20))
62 types = [a-mod(a,0.001),b-mod(b,0.001),c-mod(c,0.001)]
63 x_coords = [5, 10, 20]
64 y_coords = [getPercentA(getTe(5),getTd(5)),getPercentA(getTe(10),getTd(10)),getPercentA(

↪→getTe(20),getTd(20))]
65
66 for i,type in enumerate(types):
67 x = x_coords[i]
68 y = y_coords[i]
69 plt.scatter(x, y, marker=’x’, color=’red’)
70 plt.text(x-1, y+2.5, type, fontsize=9)
71
72 figure()
73 subplot(211)
74
75 axes = plt.gca()
76 axes.set_xlim([0,25])
77
78 plot(t,getTe(t), label="Electric Trucks")
79 plot(t,getTd(t), label="Diesel Trucks")
80 plot(t, getTe(t) + getTd(t), label = "Sum")
81
82 xlabel("Time (years)")
83 ylabel("Number of Trucks")
84
85 rcParams[’legend.fontsize’] = 16.0
86 legend(loc=(0.1,-1),ncol=3)
87
88 #show()
89
90 tight_layout()

Sensitivity Analysis for Part 3:

1 import numpy as np
2 from scipy.integrate import odeint
3 import matplotlib.pyplot as plt
4 from matplotlib import pylab
5 from pylab import *
6
7 N = 100000
8 t = linspace(0,100,N)
9
10 #### - Constants
11 D = 183888
12 ke = 0.1
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13 kd = 0.0867
14 ce = 0.57
15 cd = 0.43
16 me = ce*D-500*ke
17 md = cd*D-1820483*kd
18
19 #M =
20 Stations = [4.71,3.83,3.6,6.12,3.35]
21 Chargers = [8288.76,9708.31,5265.85,5083.84,7577.72]
22 AADTT = [14288,12735,9843,9429,13975]
23 Air = [[8.4,7.9],[6.6,6.8,9.3],[9.2,8.1,6.6,7.2,6.3],[7.4,8.3,7.4,6.9],[12.8]]
24 weights = [0.78,0.27,0.23,0.71,0.04]
25
26 def getE(S,C):
27 Econ = [0,0,0,0,0]
28 cs = max(S)
29 cc = max(C)
30 for i in range(len(Econ)):
31 Econ[i] = (S[i]/cs + C[i]/cc)/2
32 return Econ
33
34 def getN(T,A):
35 Enviro = [0,0,0,0,0]
36 X = [0,0,0,0,0]
37 for i in range(len(A)):
38 for j in range(len(A[i])):
39 X[i] += A[i][j]/len(A[i])
40 ct = max(T)
41 ca = max(X)
42 for i in range(len(Enviro)):
43 avg = 0
44 Enviro[i] = (T[i]/ct+X[i]/ca)/2
45 return Enviro
46
47 def getScore3(S,C,T,A,we,r,n):
48 ret = [0,0,0,0,0]
49 wn = [0,0,0,0,0]
50 for i in range(5):
51 wn[i] = 1 - we[i]
52 if(n==3):
53 for i in range(5):
54 ret[i] = we[i]*r/(we[i]*r+wn[i])*getE(S,C)[i]+wn[i]/(we[i]*r+wn[i])*getN(T,A)[i]
55 if(n==4):
56 for i in range(5):
57 ret[i] = we[i]/(we[i]+wn[i]*r)*getE(S,C)[i]+wn[i]*r/(we[i]+wn[i]*r)*getN(T,A)[i]
58 if(n==0):
59 for i in range(5):
60 ret[i] = we[i]*getE(S,C)[i]+wn[i]*getN(T,A)[i]
61 return ret
62
63 p = 0.1
64 percentages = [[0,0,0,0,0],[0,0,0,0,0]]
65 for i in range(5):
66 percentages[0][i] = getScore3(Stations,Chargers,AADTT,Air,weights,1-p,4)[i]/getScore3(
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↪→Stations,Chargers,AADTT,Air,weights,1,0)[i]
67 percentages[1][i] = getScore3(Stations,Chargers,AADTT,Air,weights,1+p,4)[i]/getScore3(

↪→Stations,Chargers,AADTT,Air,weights,1,0)[i]
68
69 print("wd")
70 print(percentages)
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